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Wind-forced breaking waves

Change in surface topography + spray formation:
modulation of mass, momentum and heat transfer

ev. Fluid Mech., 2015

Waves and wave breaking modulate the exchanges
of momentum, energy and mass at the ocean-atmosphere interface



Using high fidelity numerical simulations to study
wind-forced breaking waves

Part 1: Effect of wave breaking on momentum fluxes
—> Scapin et al. 2025 - JFM

Part 2: Effect of wave breaking on underwater turbulence

—> In prep.

Methodology:

* Fully-resolved simulations (both in time and space) of two-phase
turbulence flow

*  We solve the “native equations” (Navier-Stokes equation with surface
tension) without subgrid models or prescribed wave motion

* Open-source implementation available at http://basilisk.fr/




Part 1: Exchanged momentum fluxes (1/2)

Dimensionless momentum flux, Cp

Wave propagation

Atmosphere

Ocean

u?

Crn =
P U(z=10m)

Drag coefficient:
the imposed stress (per unit of air

density) over U%,



Part 1: Exchanged momentum fluxes (2/2)

Dimensionless momentum flux, Cp
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Questions:
(a) What’s the physical mechanism(s) behind the non-linear variation of Cp with Uy 4?

(b) What’s the role of wave breaking?




growing stages, G4 , breaking stages, B,
0Ey, /0t >0 0Ey, /0t <0

uw/c=0.9

Wave energy curve
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The instantaneous change in Ey, (t),i. e.change in a(t)k
(1) Affects the exchanged momentum, i.e. pressure and viscous forces, between air and water;
(2) Modulates the airflow; 6





Momentum fluxes/exchanged forces

— paUt  Growing stage: increase in the pressure force

-
L= Fp.x
— cx Breaking stage: drop in the pressure force

Streamwise momentum budget in the air
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the compensation for pressure force comes from
the change in the mean flow and partially from the > Airflow modulation
viscous contribution




Airflow modulation

Streamwise velocity profile (in a wave-following coordinate) during the pre-breaking G,, breaking
and post-breaking stages G, ,
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During wave-breaking the flow progressively
accelerates in the region near the wave field, { < 4
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Drag reduction



Acecrodynamic drag coefficient, C,, ., over breaking wawves

During the breaking: (/) reduction of the pressure force, (2) flow acceleration in the region close
to the wave field
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Breaking stages: during the growing stage,
Cpq continuously increases with. During
the breaking stage, Cp, decreases with
u,/c
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Chb

Drag coefficient over breaking waves

Using the classical definition of the drag coefficient in physical oceanography
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Part 2: Wave breaking-induced dissipation
when wave break: energy is dissipated and transfer into the water column

Large scatter of field data for the dissipation = Enhanced turbulence dissipation
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Sutherland & Melville (JPO, 2015)

How wave breaking modulate the underwater dissipation? 11



Wave breaking-induced dissipation (1/2)

Energy Evolution
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Dissipation negligible during G4

Wave breaking promotes the transition
Dissipation starts to become larger during B; and is of the dissipation profile!

transported in the water column during B, 12




Scaling the underwater energy dissipation (1/2)
Sutherland and Melville (JPO, 2015) proposed to rescale € as
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Scaling the underwater energy dissipation (2/2)

Wall-layer scaling

3/2
1
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Proposed scaling

Pa u*
&(2) = pr .

=
Re, x= [-54.-5, 107, 107]

e i) * Wall-layer scaling: just based on wall-
layer arguments: no good collapse of the
different simulation results

* Proposed scaling based on information
from the wind, 1.e. u,, and wave field,
1.e. ¢: good collapse across the different
u,/c
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Conclusions

Momentum fluxes

* Direct numerical simulations of wind-forced wave breaking at high wind speed

* Analysis performed by separating the growing and the breaking cycle

* Nonmonotonous behaviour of the pressure force which reduces after the breaking stage (even
without droplets). Reduction is linked to the airflow modulation

* Saturation of Cp , and Cp controlled by wave breaking dynamics

Breaking-induced dissipation

* Wave breaking is sufficient to promote the transition of € to ~z~

*  New scaling, based on the friction velocity and wave speed, to unify the dissipation profile
across different u, /c

1

N. Scapin et al., “Momentum fluxes in wind-forced breaking waves”, Journal of Fluid Mechanics

N. Scapin et al., “Growth and dissipation in wind-forced breaking waves”, to be submitted in
Geophysical Research Letters

MECHANICAL &

High Meadows
Environmental AEROSPACE
Institute ENGINEERING .




Wind-wave interaction problem: physical parameters

(Lo — hw)/A

i‘ hw /A
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Fully-resolved direct numerical simulations
using Basilisk solver (http://basilisk.fr/)

|

Motion of the wave field not prescribed nor
sub-grid model for turbulence

11 physical parameters with 3 units (|[M]. [L]. [T])
PaPw:rHar Kw) (LO _ hW)r hw, A: Ao, 0, |g |; Uy

l IT theorem

8 physical dimensionless parameters
* Density ratio: p,/py,
« Ratios of length scales: (L, — hy/)/A, hy, /A

oy ul |
* Friction Reynolds number: Re, ) = x ‘;
a
PwCA
* Wave Reynolds number: Re,, pe = e
w

Bo = Igl(;oW;;o‘sl)il2
4mco
* Initial wave steepness: agk

e Bond number:

. . . u
 Friction velocity over wave speed: ?*

L
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Configuration set-up

* Initial condition in Air: fully-developed turbulence
* Initial condition in Water: potential flow solution of a third-order Stokes wave.

Computational domain:

* 41 X 44 X 44, h,, = 0.644,Ly — h,, = 3.364
e x-y: periodic directions; z: free-slip conditions;

e Grid resolution: L% — ['1(i.e. 10243 — 20483);

(Lo — hw)/A
We fix:
Re, = 720,Re,, = 2.5-10% Bo = 200, ayk = 0.3

I hw /A

We vary (in the high-wind speed regime):

Uy
? =03-04—-05-0.7- 0.9;
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Numerical methodology

Direct solution of (/) continuity equation (incompressibility constraint) with (2) the momentum
equation for a two-phase system

V-u=90

p(du+V-(uuw) =-Vp + V- uWVu+vul)) + okdr + pg

Main features of the numerical algorithm:

* Sharp-interface formulation for the interface advection (geometric VoF)

* Momentum consistent formulation to ensure robustness at high density ratio

* Well-balanced formulation to avoid artificial parasitic currents at the interface
* Adaptive mesh-refinement (AMR) techniques based on wavelet transformation

Basilisk: Open-source implementation available at http://basilisk.fr/
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